set.seed(12345)
dataset <- data.frame(
observations = c(rep(x = FALSE, times = 500),
rep(x = TRUE, times = 500)),
predictions_model1 = c(runif(n = 250, min = 0, max = 0.6),
runif(n = 250, min = 0.1, max = 0.7),
runif(n = 250, min = 0.4, max = 1),
runif(n = 250, min = 0.3, max = 0.9)),
predictions_model2 = c(runif(n = 250, min = 0.1, max = 0.55),
runif(n = 250, min = 0.15, max = 0.6),
runif(n = 250, min = 0.3, max = 0.9),
runif(n = 250, min = 0.25, max = 0.8)),
evaluation_mask = c(rep(x = FALSE, times = 250),
rep(x = TRUE, times = 250),
rep(x = FALSE, times = 250),
rep(x = TRUE, times = 250))
)
# Default parameterization, return a vector without AUC and maxTSS:
conf_and_cons <- measures(observations = dataset$observations,
predictions = dataset$predictions_model1,
evaluation_mask = dataset$evaluation_mask)
print(conf_and_cons)
names(conf_and_cons)
conf_and_cons[c("CPP_eval", "DCPP")]
# Calculate AUC and maxTSS as well if package ROCR is installed:
if (requireNamespace(package = "ROCR", quietly = TRUE)) {
conf_and_cons_and_goodness <- measures(observations = dataset$observations,
predictions = dataset$predictions_model1,
evaluation_mask = dataset$evaluation_mask,
goodness = TRUE)
}
# Calculate the measures for multiple models in a for loop:
model_IDs <- as.character(1:2)
for (model_ID in model_IDs) {
column_name <- paste0("predictions_model", model_ID)
conf_and_cons <- measures(observations = dataset$observations,
predictions = dataset[, column_name, drop = TRUE],
evaluation_mask = dataset$evaluation_mask,
df = TRUE)
if (model_ID == model_IDs[1]) {
conf_and_cons_df <- conf_and_cons
} else {
conf_and_cons_df <- rbind(conf_and_cons_df, conf_and_cons)
}
}
conf_and_cons_df
# Calculate the measures for multiple models in a lapply():
conf_and_cons_list <- lapply(X = model_IDs,
FUN = function(model_ID) {
column_name <- paste0("predictions_model", model_ID)
measures(observations = dataset$observations,
predictions = dataset[, column_name, drop = TRUE],
evaluation_mask = dataset$evaluation_mask,
df = TRUE)
})
conf_and_cons_df <- do.call(what = rbind,
args = conf_and_cons_list)
conf_and_cons_df
Run the code above in your browser using DataLab