data(jobchar)
predictors <- c('auto', 'skill_var', 'task_var', 'task_sig', 'task_id',
'fb_job', 'job_comp', 'interdep', 'fb_others', 'soc_support')
sevar_jobchar_perf <-
cor_covariance_meta(
r = jobchar$r[c('perform', predictors), c('perform', predictors)],
n = jobchar$n[c('perform', predictors), c('perform', predictors)],
sevar = jobchar$sevar_r[c('perform', predictors), c('perform', predictors)],
rho = jobchar$rho[c('perform', predictors), c('perform', predictors)],
sevar_rho = jobchar$sevar_rho[c('perform', predictors),
c('perform', predictors)],
source = jobchar$source[c('perform', predictors), c('perform', predictors)])
cpa_jobchar_perf <- cpa_mat(perform ~ auto + skill_var + task_var + task_sig +
task_id + fb_job + job_comp +
interdep + fb_others + soc_support,
cov_mat = jobchar$rho,
n = harmonic_mean(as.vector(jobchar$n[c('perform', predictors),
c('perform', predictors)])),
se_var_mat = sevar_jobchar_perf,
adjust = "pop", conf_level = .95)
Run the code above in your browser using DataLab