powered by
Estimate the sampling error variance for criterion profile analysis parameters
var_error_cpa( Rxx, rxy, n = NULL, se_var_mat = NULL, adjust = c("fisher", "pop", "cv") )
A list containing sampling covariance matrices or sampling error variance estimates for CPA parameters
An intercorrelation matrix among the predictor variables
A vector of predictor–criterion correlations
The sample size. If NULL and se_var_mat is provided, n will be estimated as the effective sample size based on se_var_mat. See n_effective_R2().
se_var_mat
n
n_effective_R2()
A matrix of sampling covariance values for the elements of Rxx and rxy. If NULL, generated using the Normal theory covariance matrix based on n.
Rxx
rxy
Method to adjust R-squared for overfitting. See adjust_Rsq for details.
adjust_Rsq
var_error_cpa(mindfulness$rho[1:5, 1:5], mindfulness$rho[1:5, 6], n = 17060)
Run the code above in your browser using DataLab