This function calculates bootstrap confidence intervals for the population value of q quantile(x) - q quantile(y).
ci_quantile_diff(
x,
y,
q = 0.5,
probs = c(0.025, 0.975),
type = "bootstrap",
boot_type = c("bca", "perc", "norm", "basic"),
R = 9999,
seed = NULL,
...
)
A numeric vector.
A numeric vector.
A single probability value determining the quantile. Set to 0.5 for the median (default).
Error probabilites. The default c(0.025, 0.975) gives a symmetric 95% confidence interval.
Type of confidence interval. Currently, "bootstrap" is the only option.
Type of bootstrap confidence interval ("bca", "perc", "norm", "basic").
The number of bootstrap resamples.
An integer random seed.
Further arguments passed to boot::boot
.
A list with class cint
containing these components:
parameter
: The parameter in question.
interval
: The confidence interval for the parameter.
estimate
: The estimate for the parameter.
probs
: A vector of error probabilities.
type
: The type of the interval.
info
: An additional description text for the interval.
Bootstrap confidence intervals are calculated by the package "boot". The default bootstrap type is "bca" (bias-corrected & accelerated) as it enjoys the property of being second order accurate and is transformation respecting (see Efron, p. 188). The sampling is done within sample.
Efron, B. and Tibshirani R. J. (1994). An Introduction to the Bootstrap. Chapman & Hall/CRC.
Canty, A and Ripley B. (2019). boot: Bootstrap R (S-Plus) Functions.
# NOT RUN {
x <- 10:30
y <- 1:30
ci_quantile_diff(x, y, R = 999)
# }
Run the code above in your browser using DataLab