This function calculates bootstrap confidence intervals for the population value of median(x) - median(y) by calling ci_quantile_diff(, q = 0.5). See ci_quantile_diff
for details.
ci_median_diff(
x,
y,
probs = c(0.025, 0.975),
type = "bootstrap",
boot_type = c("bca", "perc", "norm", "basic"),
R = 9999,
seed = NULL,
...
)
A numeric vector.
A numeric vector.
Error probabilites. The default c(0.025, 0.975) gives a symmetric 95% confidence interval.
Type of confidence interval. Currently, "bootstrap" is the only option.
Type of bootstrap confidence interval ("bca", "perc", "norm", "basic").
The number of bootstrap resamples.
An integer random seed.
Further arguments passed to boot::boot
.
A list with class cint
containing these components:
parameter
: The parameter in question.
interval
: The confidence interval for the parameter.
estimate
: The estimate for the parameter.
probs
: A vector of error probabilities.
type
: The type of the interval.
info
: An additional description text for the interval.
# NOT RUN {
x <- 10:30
y <- 1:30
ci_median_diff(x, y, R = 999)
# }
Run the code above in your browser using DataLab