This function calculates CIs for the non-centrality parameter (NCP) of the chi-squared distribution. A positive lower (1-alpha)*100%-confidence limit for the NCP goes hand-in-hand with a significant association test at level alpha. By default, CIs are computed by Chi-squared test inversion. This can be unreliable for very large test statistics. The default bootstrap type is "bca".
ci_chisq_ncp(
x,
probs = c(0.025, 0.975),
correct = TRUE,
type = c("chi-squared", "bootstrap"),
boot_type = c("bca", "perc", "norm", "basic"),
R = 9999L,
seed = NULL,
...
)
An object of class "cint" containing these components:
parameter
: Parameter specification.
interval
: CI for the parameter.
estimate
: Parameter estimate.
probs
: Lower and upper probabilities.
type
: Type of interval.
info
: Additional description.
The result of stats::chisq.test()
, a table/matrix
of frequencies,
or a data.frame
with exactly two columns.
Lower and upper probabilities, by default c(0.025, 0.975).
Should Yates continuity correction be applied to the 2x2 case?
The default is TRUE
(also used in the bootstrap), which differs from
ci_cramersv()
.
Type of CI. One of "chi-squared" (default) or "bootstrap".
Type of bootstrap CI ("bca", "perc", "norm", "basic").
Only used for type = "bootstrap"
.
The number of bootstrap resamples. Only used for type = "bootstrap"
.
An integer random seed. Only used for type = "bootstrap"
.
Further arguments passed to boot::boot()
.
Smithson, M. (2003). Confidence intervals. Series: Quantitative Applications in the Social Sciences. New York, NY: Sage Publications.
ci_cramersv
.
ci_chisq_ncp(mtcars[c("am", "vs")])
ci_chisq_ncp(mtcars[c("am", "vs")], type = "bootstrap", R = 999) # Use larger R
Run the code above in your browser using DataLab