Learn R Programming

{confintr}

Overview

{confintr} offers classic and/or bootstrap confidence intervals (CI) for the following parameters:

  • mean,
  • quantiles incl. median,
  • proportion,
  • variance and standard deviation,
  • IQR and MAD,
  • skewness and kurtosis,
  • R-squared and the non-centrality parameter of the F distribution,
  • Cramér's V and the non-centrality parameter of the chi-squared distribution,
  • odds ratio of a 2x2 table,
  • Pearson-, Spearman-, Kendall correlation coefficients,
  • mean differences, quantile and median differences.

Both one- and two-sided intervals are supported.

Different types of bootstrap intervals are available via {boot}, see vignette.

Installation

# From CRAN
install.packages("confintr")

# Development version
devtools::install_github("mayer79/confintr")

Usage

library(confintr)
set.seed(1)

# Mean
ci_mean(1:100)

# Two-sided 95% t confidence interval for the population mean
# 
# Sample estimate: 50.5 
# Confidence interval:
#     2.5%    97.5% 
# 44.74349 56.25651 

# Mean using the Bootstrap
ci_mean(1:100, type = "bootstrap")

#   Two-sided 95% bootstrap confidence interval for the population mean
# 	based on 9999 bootstrap replications and the student method
# 
# Sample estimate: 50.5 
# Confidence interval:
#     2.5%    97.5% 
# 44.72913 56.34685

# 95% value at risk
ci_quantile(rexp(1000), q = 0.95)

# 	Two-sided 95% binomial confidence interval for the population 95%
# 	quantile
# 
# Sample estimate: 2.954119 
# Confidence interval:
#     2.5%    97.5% 
# 2.745526 3.499928 

# Mean difference
ci_mean_diff(1:100, 2:101)

#	Two-sided 95% t confidence interval for the population value of mean(x)-mean(y)
#
# Sample estimate: -1 
# Confidence interval:
#      2.5%     97.5% 
# -9.090881  7.090881 

ci_mean_diff(1:100, 2:101, type = "bootstrap", seed = 1)

# Two-sided 95% bootstrap confidence interval for the population value of mean(x)-mean(y)
# based on 9999 bootstrap replications and the student method
#
# Sample estimate: -1 
# Confidence interval:
#      2.5%     97.5% 
# -9.057506  7.092050

# Further examples (without output)

# Correlation
ci_cor(iris[1:2], method = "spearman", type = "bootstrap")

# Proportions
ci_proportion(10, n = 100, type = "Wilson")
ci_proportion(10, n = 100, type = "Clopper-Pearson")

# R-squared
fit <- lm(Sepal.Length ~ ., data = iris)
ci_rsquared(fit, probs = c(0.05, 1))

# Kurtosis
ci_kurtosis(1:100)

# Mean difference
ci_mean_diff(10:30, 1:15)
ci_mean_diff(10:30, 1:15, type = "bootstrap")

# Median difference
ci_median_diff(10:30, 1:15)

Copy Link

Version

Install

install.packages('confintr')

Monthly Downloads

10,553

Version

1.0.2

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Michael Mayer

Last Published

June 4th, 2023

Functions in confintr (1.0.2)

ci_rsquared

CI for the Population R-Squared
ci_cor

CI for Correlation Coefficients
ci_cramersv

CI for the Population Cramer's V
is.cint

Type Check
ci_quantile_diff

CI for the Population Quantile Difference of two Samples
skewness

Sample Skewness
print.cint

Print "cint" Object
se

Standard errors
cramersv

Cramer's V
ci_var

CI for the Population Variance
oddsratio

Odds Ratio
moment

Sample Moments
kurtosis

Pearson's Measure of Kurtosis
ci_oddsratio

CI for the Odds Ratio
ci_median

CI for the Population Median
ci_f_ncp

CI for the Non-Centrality Parameter of the F Distribution
ci_IQR

CI for the IQR
ci_mean_diff

CI for the Population Mean Difference
ci_kurtosis

CI for the Kurtosis
ci_mad

CI for the MAD
ci_mean

CI for the Population Mean
ci_chisq_ncp

CI for the NCP of the Chi-Squared Distribution
ci_sd

CI for the Population Std
ci_proportion

CI for a Population Proportion
ci_quantile

CI for a Population Quantile
ci_skewness

CI for the Skewness
ci_median_diff

CI for the Population Median Difference of two Samples