require(lattice)
bar = transform(lattice::barley, env=factor(paste(site,year)))
set.seed(123)
bar <- bar[sample(1:nrow(bar), 70, replace=TRUE),]
con_view(bar, yield ~ variety * env, cex.x=1, cex.y=.3, cluster=FALSE)
# Create a heatmap of cell counts
w2b = colorRampPalette(c('wheat','black'))
con_view(bar, yield ~ variety * env, fun.aggregate=length,
cex.x=1, cex.y=.3, col.regions=w2b, cluster=FALSE)
# Example from paper by Fernando et al. (1983).
set.seed(42)
data_fernando = transform(data_fernando,
y=stats::rnorm(9, mean=100))
con_view(data_fernando, y ~ gen*herd, cluster=FALSE,
main = "Fernando unsorted")
con_view(data_fernando, y ~ gen*herd, cluster=TRUE,
main = "Fernando unsorted")
# Example from Searle (1971), Linear Models, p. 325
dat2 = transform(data_searle,
y=stats::rnorm(nrow(data_searle)) + 100)
con_view(dat2, y ~ f1*f2, cluster=FALSE, main="data_searle unsorted")
con_view(dat2, y ~ f1*f2, main="data_searle clustered")
Run the code above in your browser using DataLab