n = 200; p = 500; s = 10
beta = c(rep(1.5, s), rep(0, p - s))
X = matrix(rnorm(n * p), n, p)
Y = X %*% beta + rt(n, 2)
## Regularized conquer with lasso penalty at tau = 0.7
fit.lasso = conquer.reg(X, Y, lambda = 0.05, tau = 0.7, penalty = "lasso")
beta.lasso = fit.lasso$coeff
## Regularized conquer with elastic-net penalty at tau = 0.7
fit.elastic = conquer.reg(X, Y, lambda = 0.1, tau = 0.7, penalty = "elastic", para.elastic = 0.7)
beta.elastic = fit.elastic$coeff
## Regularized conquer with scad penalty at tau = 0.7
fit.scad = conquer.reg(X, Y, lambda = 0.13, tau = 0.7, penalty = "scad")
beta.scad = fit.scad$coeff
## Regularized conquer with group lasso at tau = 0.7
beta = c(rep(1.3, 5), rep(1.5, 5), rep(0, p - s))
err = rt(n, 2)
Y = X %*% beta + err
group = c(rep(1, 5), rep(2, 5), rep(3, p - s))
fit.group = conquer.reg(X, Y, lambda = 0.05, tau = 0.7, penalty = "group", group = group)
beta.group = fit.group$coeff
Run the code above in your browser using DataLab