# NOT RUN {
set.seed(1)
## Set seed for reproducibility
data(AOH)
## Load AOH data
test1<-bcct(formula=y~(alc+hyp+obe)^3,data=AOH,n.sample=100,prior="UIP")
## Starting from maximal model of saturated model do 100 iterations of MCMC
## algorithm.
inter_probs(test1,n.burnin=10,cutoff=0)
## Calculate posterior probabilities having used a burn-in phase of
## 10 iterations and a cutoff of 0 (i.e. display all terms with
## non-zero posterior probability). Will get the following:
#Posterior probabilities of log-linear parameters:
# post_prob
#(Intercept) 1.0000
#alc 1.0000
#hyp 1.0000
#obe 1.0000
#alc:hyp 0.1778
#alc:obe 0.0000
#hyp:obe 0.4444
#alc:hyp:obe 0.0000
## Note that the MCMC chain (after burn-in) does not visit any models
## with the alc:obe or alc:hyp:obe interactions.
# }
Run the code above in your browser using DataLab