Learn R Programming

convergenceDFM (version 0.1.4)

rotation_null_test: Rotation null hypothesis test for factor coupling

Description

Tests whether the observed correlation structure between X and Y factor spaces is significantly stronger than would be expected under random orthogonal rotations.

Usage

rotation_null_test(
  scores_X,
  scores_Y,
  lag = 1,
  B = 1000,
  seed = 123,
  compute = c("procrustes", "cca", "principal", "dynbeta"),
  progress = TRUE,
  rotate = "Y"
)

Value

List with components:

observed

Observed correlation statistics.

null_distribution

Matrix of statistics under null rotations.

p_values

One-sided p-values for each statistic.

significant

Logical indicating significance at alpha = 0.05.

Arguments

scores_X

Factor scores from first dataset

scores_Y

Factor scores from second dataset

lag

Number of lags for the model (default: 1)

B

Number of bootstrap iterations (default: 1000)

seed

Random seed for reproducibility (default: 123)

compute

Vector of methods to compute: 'procrustes', 'cca', 'principal', 'dynbeta'

progress

Logical, show progress bar (default: TRUE)

rotate

Which dataset to rotate: 'X' or 'Y' (default: 'Y')

Details

(contemporaneous). "spearman", or "kendall".