Learn R Programming

convergenceDFM (version 0.1.4)

test_permutation_robustness: Permutation-based robustness test

Description

Tests the robustness of factor-OU convergence findings by randomly permuting the Y factor space and re-estimating the model. Generates empirical null distribution for convergence statistics.

Usage

test_permutation_robustness(
  factors_data,
  data_prep,
  n_perms = 100,
  seed = 123,
  use_stan = TRUE,
  chains = 4,
  iter = 2000,
  verbose = TRUE
)

Value

List with components:

observed_lambda

Original mean-reversion speeds.

null_distribution

Matrix of permutation-based lambda values.

p_values

One-sided p-values for each factor.

significant

Logical vector indicating significance at alpha = 0.05.

effect_size

Standardized effect sizes (z-scores).

Arguments

factors_data

Data frame with factor information

data_prep

Prepared data object

n_perms

Number of permutations (default: 100)

seed

Random seed for reproducibility (default: 123)

use_stan

Logical, use Stan for estimation (default: TRUE)

chains

Number of MCMC chains (default: 4)

iter

Number of MCMC iterations (default: 2000)

verbose

Logical; print progress and diagnostic information. Default TRUE.

Details

(too slow for many iterations).