NSconvo_sim
simulates data from the nonstationary model, given
mixture component kernel matrices. The function requires either a mixture
component kernel object, from the function f.mc.kernels(), or a direct
specification of the mixture component locations and mixture component
kernels.
NSconvo_sim(
grid = TRUE,
y.min = 0,
y.max = 5,
x.min = 0,
x.max = 5,
N.obs = 20^2,
sim.locations = NULL,
mc.kernels.obj = NULL,
mc.kernels = NULL,
mc.locations = NULL,
lambda.w = NULL,
tausq = 0.1,
sigmasq = 1,
beta.coefs = 4,
kappa = NULL,
covariates = rep(1, N.obs),
cov.model = "exponential"
)
Logical; indicates of the simulated data should fall on a
grid (TRUE
) or not (FALSE
).
Lower bound for the y-coordinate axis.
Upper bound for the y-coordinate axis.
Lower bound for the y-coordinate axis.
Upper bound for the y-coordinate axis.
Number of simulated data values.
Optional N.obs
x 2 matrix; allows the user
to specify the locations of the simulated data.
Object from the f_mc_kernels
function.
Optional specification of mixture component kernel matrices.
Optional specification of mixture component locations.
Scalar; tuning parameter for the weight function.
Scalar; true nugget variance.
Scalar; true process variance.
Vector of true regression coefficients. Length must
match the number of columns in covariates
.
Scalar; true smoothness.
Matrix with N.obs
rows, corresponding to
covariate information for each of the simualted values.
A string specifying the model for the correlation
function; defaults to "exponential"
.
Options available in this package are: "exponential
",
"matern"
, and "gaussian"
.
A list with the following components:
Matrix of locations for the simulated values.
Mixture component locations used for the simulated data.
Mixture component kernel matrices used for the simulated data.
N.obs
x 2 x 2 array, containing the kernel
matrices corresponding to each of the simulated values.
True covariance matrix (N.obs
x N.obs
)
corresponding to the simulated data.
Simulated data values.
Tuning parameter for the weight function.
# NOT RUN {
NSconvo_sim( grid = TRUE, y.min = 0, y.max = 5, x.min = 0,
x.max = 5, N.obs = 20^2, sim.locations = NULL, mc.kernels.obj = NULL,
mc.kernels = NULL, mc.locations = NULL, lambda.w = NULL,
tausq = 0.1, sigmasq = 1, beta.coefs = 4, kappa = NULL,
covariates = rep(1,N.obs), cov.model = "exponential" )
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab