Learn R Programming

convoSPAT (version 1.2.7)

evaluate_CV: Evaluation criteria

Description

Calculate three evaluation criteria -- continuous rank probability score (CRPS), prediction mean square deviation ratio (pMSDR), and mean squared prediction error (MSPE) -- comparing hold-out data and predictions.

Usage

evaluate_CV(holdout.data, pred.mean, pred.SDs)

Arguments

holdout.data

Observed/true data that has been held out for model comparison.

pred.mean

Predicted mean values corresponding to the hold-out locations.

pred.SDs

Predicted standard errors corresponding to the hold-out locations.

Value

A list with the following components:

CRPS

The CRPS averaged over all hold-out locations.

MSPE

The mean squared prediction error.

pMSDR

The prediction mean square deviation ratio.

Examples

Run this code
# NOT RUN {
evaluate_CV( holdout.data = simdata$sim.data[holdout.index],
pred.mean = pred.NS$pred.means, pred.SDs = pred.NS$pred.SDs )
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab