powered by
f_mc_kernels calculates spatially-varying mixture component kernels using generalized linear models for each of the eigenvalues (lam1 and lam2) and the angle of rotation (eta).
f_mc_kernels
f_mc_kernels( y.min = 0, y.max = 5, x.min = 0, x.max = 5, N.mc = 3^2, lam1.coef = c(-1.3, 0.5, -0.6), lam2.coef = c(-1.4, -0.1, 0.2), logit.eta.coef = c(0, -0.15, 0.15) )
Lower bound for the y-coordinate axis.
Upper bound for the y-coordinate axis.
Number of mixture component locations.
Log-linear regression coefficients for lam1; the coefficients correspond to the intercept, longitude, and latitude.
Log-linear regression coefficients for lam2; the coefficients correspond to the intercept, longitude, and latitude.
Scaled logit regression coefficients for eta; the coefficients correspond to the intercept, longitude, and latitude.
A list with the following components:
A N.mc x 2 matrix of the mixture component locations.
N.mc
A N.mc x 2 x 2 array of kernel matrices corresponding to each of the mixture component locations.
# NOT RUN { f_mc_kernels( y.min = 0, y.max = 5, x.min = 0, x.max = 5, N.mc = 3^2, lam1.coef = c(-1.3, 0.5, -0.6), lam2.coef = c(-1.4, -0.1, 0.2), logit.eta.coef = c(0, -0.15, 0.15) ) # }
Run the code above in your browser using DataLab