Numerically set a logical whether a copula is radially symmetric (Nelson, 2006, p. 37). A copula $\mathbf{C}(u,v)$ is radially symmetric if and only if for any ${u,v} \in [0,1]$ the following hold
$$\mathbf{C}(u,v) = u + v - 1 + \mathbf{C}(1-u, 1-v)$$
or
$$u + v - 1 + \mathbf{C}(1-u, 1-v) - \mathbf{C}(u,v) \equiv 0\mbox{.}$$