rhoCOP(cop=PSP) # 0.4784176
rhoCOP(cop=PSP, brute=TRUE) # 0.4684063
# CPU heavy example showing that the dual-integration (fast) results in
# a Spearman's Rho that mimics a sample version
dorho <- function(n) {
uv <- simCOP(n=n, cop=PSP, ploton=FALSE, points=FALSE)
return(cor(uv$U, uv$V, method="spearman"))
}
rhos <- replicate(100, dorho(1000))
rho.sample <- mean(rhos); print(rho.sample) # 0.472661
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.00395, para2=4.67, alpha=0.9392, beta=0.5699)
rhoCOP(cop=composite2COP, para=para) # -0.5924796
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.14147, para2=20.96, alpha=0.0411, beta=0.6873)
rhoCOP(cop=composite2COP, para=para) # 0.2818874
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.10137, para2=4492.87, alpha=0.0063, beta=0.0167)
rhoCOP(cop=composite2COP, para=para) # 0.9812919
rhoCOP(cop=composite2COP, para=para, brute=TRUE) # 0.9752155
Run the code above in your browser using DataLab