blomCOP(cop=PSP)
# Nelsen (2006, exer. 5.17, p. 185):
B <- blomCOP(cop=N4212cop, para=2.2)
G <- giniCOP(cop=N4212cop, para=2.2)
R <- rhoCOP(cop=N4212cop, para=2.2)
T <- tauCOP(cop=N4212cop, para=2.2, brute=TRUE) # numerical problems w/o brute
if(1*(1+B)^2/4 - 1 <= T & T <= 1 - 1*(1-B)^2/4 ) print("TRUE")
if(3*(1+B)^3/16 - 1 <= T & T <= 1 - 3*(1-B)^3/16) print("TRUE")
if(3*(1+B)^2/8 - 1 <= T & T <= 1 - 3*(1-B)^2/8 ) print("TRUE")
# A demonstration of a special feature of blomCOP for sample data.
set.seed(794)
UV <- simCOP(n=950, cop=PSP, graphics=FALSE) # Beta = 1/3
HatBeta <- blomCOP(para=UV, sambeta=TRUE) # HatBeta = 0.3136842
n <- 400
H <- sapply(1:100, function(i) {
blomCOP(para=simCOP(n=n, cop=PSP, graphics=FALSE), sambeta=TRUE)
})
print(var(H)) # Joe (2015) says that sqrt(n)(B-hatB) is Norm(0, 1 - B^2)
# but I have been unable to support this for large samples. Some confusion
# exists in Joe's syntax and discussion. Various handling of n and other
# suggests perhaps that 1 - B^2 is not quite right?
Run the code above in your browser using DataLab