# Radially symmetry is computationally intensive and relies on a gridded [0,1]x[0,1]
# space and laborious check on equality. Thus these examples are commented out for
# R's --timings check. Note that the proof of radial symmetry absence of algebraic
# manipulation or verification is difficult and subject to the fineness of the grid
# to find a nonequality to immediately conclude FALSE.
isCOP.radsym(cop=P) # TRUE
para <- list(cop1=PLACKETTcop, cop2=M, para1=c(.3), para2=NA, alpha=0.8, beta=0.5)
isCOP.radsym(composite2COP, para=para) # FALSE
gh <- simCOP(n=34, cop=GHcop, para=theta, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.
# The sort=FALSE is critical in the following two calls
fakeU <- lmomco::pp(gh[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(gh[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV); # our U-statistics
set.seed(120); theta <- 2
gh <- simCOP(n=34, cop=GHcop, para=theta, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.
# The sort=FALSE is critical in the following two calls
fakeU <- lmomco::pp(gh[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(gh[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV); # our U-statistics
isCOP.radsym(cop=EMPIRcop, para=uv) # FALSE
isCOP.LTD(cop=EMPIRcop, para=uv) # TRUE
isCOP.RTI(cop=EMPIRcop, para=uv) # FALSE
isCOP.PQD(cop=EMPIRcop, para=uv,
empirical=TRUE) # TRUE
isCOP.radsym(cop=GHcop, para=theta) # FALSE
isCOP.LTD(cop=GHcop, para=theta) # TRUE
isCOP.RTI(cop=GHcop, para=theta) # TRUE
isCOP.PQD(cop=GHcop, para=theta) # TRUE
# Notice that isCOP.RTI is not the same for empirical and theoretical.
# This shows the difficulty in tail dependence parameter estimaton for
# small samples (see Salvadori et al., 2007 p. 175).
Run the code above in your browser using DataLab