kfuncCOPinv: The Inverse Kendall Function of a Copula
Description
Compute the (numerical) inverse $z(F_K)$ of the Kendall Function $F_K(z; \mathbf{C}; \code{\link{kfuncCOP}})$ of a copula $\mathbf{C}$ given nonexceedance probability $F_K$. The $z$ is the joint probability of the random variables $U$ and $V$ coupled to each other through the copula $\mathbf{C}$ and the nonexceedance probability of the probability $z$ is $F_K$---statements such as ``probabilities of probabilities'' are rhetorically complex so pursuit of word precision is made herein.
Usage
kfuncCOPinv(f, cop=NULL, para=NULL, ...)
Arguments
f
Nonexceedance probability $(0 \le F_K \le 1)$;
cop
A copula function;
para
Vector of parameters or other data structure, if needed, to pass to the copula; and
...
Additional arguments to pass.
Value
The value(s) for $z(F_K)$ are returned.
encoding
utf8
References
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978--146350841--8.
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.