Learn R Programming

copBasic (version 2.0.1)

kfuncCOPlmoms: The L-moments of the Kendall Function of a Copula

Description

Compute the L-moments of the Kendall Function ($F_K(z; \mathbf{C})$) of a copula $\mathbf{C}$ where the $z$ is the joint probability of the $\mathbf{C}$. The Function is the cumulative distribution function (CDF) of the joint probability $Z$ of the coupla. The expected value of the $z(F_K)$ (mean, first L-moment $\lambda_1$), because $Z$ has nonzero probability for $0 \le Z \le \infty$, is

$$\mathrm{E}[Z] = \lambda_1 = \int_0^\infty [1 - F_K(t)] = \int_0^1 [1 - F_K(t)] \,\mathrm{d}t\mbox{,}$$

where for circumstances here $0 \le Z \le 1$. The $\infty$ is mentioned only because expectations of such CDFs are usually shown using $(0,\infty)$ limits, whereas integration of quantile functions (CDF inverses) use limits $(0,1)$. Because the support of $Z$ is $(0,1)$, like the probability $F_K$, showing just it ($\infty$) as the upper limit could be confusing---statements such as ``probabilities of probabilities'' are rhetorically complex so pursuit of word precision is made herein.

An expression for $\lambda_r$ for $r \ge 2$ in terms of the $F_K(z)$ is $$\lambda_r = \frac{1}{r}\sum_{j=0}^{r-2} (-1)^j {r-2 \choose j}{r \choose j+1} \int_{0}^{1} \! [F_K(t)]^{r-j-1}\times [1 - F_K(t)]^{j+1}\, \mathrm{d}t\mbox{,}$$ where because of these circumstances the limits of integration are $(0,1)$ and not $(-\infty, \infty)$ as in the usual definition of L-moments.

The mean, L-scale, coefficient of L-variation ($\tau_2$, LCV, L-scale/mean), L-skew ($\tau_3$, TAU3), L-kurtosis ($\tau_4$, TAU4), and $\tau_5$ (TAU5) are computed. In usual nomenclature, the L-moments are $\lambda_1 = \mbox{mean,}$ $\lambda_2 = \mbox{L-scale,}$ $\lambda_3 = \mbox{third L-moment,}$ $\lambda_4 = \mbox{fourth L-moment, and}$ $\lambda_5 = \mbox{fifth L-moment,}$ whereas the L-moment ratios are $\tau_2 = \lambda_2/\lambda_1 = \mbox{coefficient of L-variation, }$ $\tau_3 = \lambda_3/\lambda_2 = \mbox{L-skew, }$ $\tau_4 = \lambda_4/\lambda_2 = \mbox{L-kurtosis, and}$ $\tau_5 = \lambda_5/\lambda_2 = \mbox{not named.}$ It is common amongst practitioners to lump the L-moment ratios into the general term L-moments and remain inclusive of the L-moment ratios. For example, L-skew then is referred to as the 3rd L-moment when it technically is the 3rd L-moment ratio. There is no first L-moment ratio has no definition so results from this function will canoncially show a NA in that slot. The coefficient of L-variation is $\tau_2$ (subscript 2) and not Kendall's Tau ($\tau$). Sample L-moments are readily computed by several packages in R(e.g. lmomco, lmom, Lmoments, POT).

Usage

kfuncCOPlmom(r, cop=NULL, para=NULL, ...)

kfuncCOPlmoms(cop=NULL, para=NULL, nmom=5, begin.mom=1, ...)

Arguments

r
The $r$th order of a single L-moment to compute;
cop
A copula function;
para
Vector of parameters or other data structure, if needed, to pass to the copula;
nmom
The number of L-moments to compute;
begin.mom
The $r$th order to begin the sequence lambegr:nmom for L-moment computation. The rarely used argument is means to bypass the computation of the mean if the user has an alternative method for the mean or other central tendency characterization
...
Additional arguments to pass.

Value

  • An Rlist is returned by kfuncCOPlmoms and only the scalar value of $\lambda_r$ by kfuncCOPlmom.
  • lambdasVector of the L-moments. First element is $\lambda_1$, second element is $\lambda_2$, and so on;
  • ratiosVector of the L-moment ratios. Second element is $\tau$, third element is $\tau_3$ and so on; and
  • sourceAn attribute identifying the computational source of the L-moments: kfuncCOPlmoms.

encoding

utf8

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978--146350841--8.

See Also

kfuncCOP

Examples

Run this code
# CPU intensive
#kfuncCOPlmom(1, cop=P) # 0.5 * 0.5 = 0.25 is expected joint prob. of independence
#[1] 0.2499999  (in agreement with theory)

#ls.str(kfuncCOPlmoms(cop=GHcop, para=4.21)) # Gumbel-Hougaard copula
# lambdas :  num [1:5] 0.440617 0.169085 0.011228 -0.000797 0.000249
# ratios :  num [1:5] NA 0.38375 0.0664 -0.00472 0.00147
# source :  chr "kfuncCOPlmoms"  # e.g. L-skew = 0.0664}
<keyword>copula (characteristics)</keyword>
<keyword>Kendall Function (L-moments)</keyword>
<concept>Kendall Function Lmoments</concept>
<concept>Kendall Function L-moments</concept>
<keyword>L-moments</keyword>
<concept>Lmoments</concept>
<concept>Kendall Function L-moment ratio diagram</concept>
<concept>Kendall Function L-moment diagram</concept>
<concept>Kendall Function Lmoment ratio diagram</concept>
<concept>Kendall Function Lmoment diagram</concept>

Run the code above in your browser using DataLab