The convex composition of two copulas (Joe, 2014, p. 155) provides for some simple complexity extension between copula families. Let \(\mathbf{A}\) and \(\mathbf{B}\) be copulas with respective vectors of parameters \(\Theta_\mathbf{A}\) and \(\Theta_\mathbf{B}\), then the convex combination of these copulas is
$$\mathbf{C}^{\times}_{\alpha}(u,v) = \alpha\cdot\mathbf{A}(u, v; \Theta_\mathbf{A}) - (1-\alpha)\cdot\mathbf{B}(u,v; \Theta_\mathbf{B})\mbox{,}$$
where \(0 \le \alpha \le 1\). The generalization of this function for \(N\) number of copulas is provided by convexCOP.
convex2COP(u,v, para, ...)Value(s) for the convex combination copula is returned.
Nonexceedance probability \(u\) in the \(X\) direction;
Nonexceedance probability \(v\) in the \(Y\) direction;
A special parameter list (see Note); and
Additional arguments to pass to the copula.
W.H. Asquith
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
COP, breveCOP, convexCOP, composite1COP, composite2COP, composite3COP, FRECHETcop,
glueCOP