Numerically estimate the copula density for a sequence of \(u\) and \(v\) probabilities for which each sequence has equal steps that are equal to \(\Delta(uv)\). The density \(c(u,v)\) of a copula \(\mathbf{C}(u,v)\) is numerically estimated by
$$c(u,v) = \bigl[\mathbf{C}(u_2,v_2) - \mathbf{C}(u_2,v_1) - \mathbf{C}(u_1,v_2) + \mathbf{C}(u_1,v_1)\bigr]\, /\, \bigl[\Delta(uv)\times\Delta(uv)\bigr]\mbox{,}$$
where \(c(u,v) \ge 0\) (see Nelsen, 2006, p. 10; densityCOPplot
). The joint density can be defined by the coupla density for continuous variables and is the ratio of the joint density funcion \(f(x,y)\) for random variables \(X\) and \(Y\) to the product of the marginal densities (\(f_x(x)\) and \(f_y(y)\)):
$$c\bigl(F_x(x), F_y(y)\bigr) = \frac{f(x,y)}{f_x(x)f_y(y)}\mbox{,}$$
where \(F_x(x)\) and \(F_y(y)\) are the respective cumulative distribution functions of \(X\) and \(Y\), and lastly \(u = F_x(x)\) and \(v = F_y(y)\).
densityCOP(u,v, cop=NULL, para=NULL, deluv=.Machine$double.eps^0.25,
truncate.at.zero=TRUE, the.zero=0, sumlogs=FALSE, ...)
Value(s) for \(c(u,v)\) are returned.
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
simCOP
, densityCOPplot
, kullCOP
, mleCOP