Numerically set a logical whether a copula is symmetric (Nelsen, 2006, p. 38), or has exchangable variables, or is permutation symmetric (Joe, 2014, p. 66). A copula \(\mathbf{C}(u,v)\) is permutation symmetric if and only if for any \(\{u,v\} \in [0,1]\) the following holds $$\mathbf{C}(u,v) = \mathbf{C}(v, u)\mbox{.}$$ The computation is (can be) CPU intensive.
isCOP.permsym(cop=NULL, para=NULL, delta=0.005, tol=1e-4, ...)
A logical TRUE
or FALSE
is returned.
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
LzCOPpermsym
, isCOP.radsym