Learn R Programming

copBasic (version 2.2.9)

kfuncCOP_Pd: The Kendall (Distribution) Function of d-Dimensional Independence Copula

Description

Compute the Kendall Distribution Function of a \(d\)-Dimensional independence copula (P) (Joe, 2014, p. 420):

$$F_K(z; \mathbf{P}_d) = z + z\sum_k^{d-1} \bigr(-\mathrm{log}(k)\bigr)^k/k!\mbox{,}$$

where \(F_K\) is the nonexceedance probability of joint probability \(z\) stemming from \(\mathbf{P}_d(u_{1, 2, \cdots d})\).

Usage

kfuncCOP_Pd(z, d=2)

Value

The value(s) for \(F_K(z; \mathbf{P}_d)\) is returned.

Arguments

z

The values for \(z\); and

d

Number of \(d\) dimensions.

Author

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

kfuncCOP