Compute the Kendall Distribution Function of a \(d\)-Dimensional independence copula (P
) (Joe, 2014, p. 420):
$$F_K(z; \mathbf{P}_d) = z + z\sum_k^{d-1} \bigr(-\mathrm{log}(k)\bigr)^k/k!\mbox{,}$$
where \(F_K\) is the nonexceedance probability of joint probability \(z\) stemming from \(\mathbf{P}_d(u_{1, 2, \cdots d})\).
kfuncCOP_Pd(z, d=2)
The value(s) for \(F_K(z; \mathbf{P}_d)\) is returned.
The values for \(z\); and
Number of \(d\) dimensions.
W.H. Asquith
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
kfuncCOP