Learn R Programming

copula (version 0.9-5)

fitMvdc: Estimation of multivariate models defined via copulas

Description

Fits a copula-based multivariate distribution to multivariate data.

Usage

loglikMvdc(param, x, mvdc, suppressMessages=FALSE)
fitMvdc(data, mvdc, start, optim.control = list(NULL), method = "BFGS")

Arguments

param
a vector of parameter values. When specifying parameters for mvdc objects the parameters should be ordered with the marginals first and the copula parameters last. When the mvdc object has marginsIdentical = TRUE
x
a data matrix.
mvdc
a "mvdc" object.
suppressMessages
logical, if TRUE, warnings messages from evaluating loglikelihood at invalid parameter values are suppressed.
data
a data matrix.
start
a vector of starting value for "param". See "param" above for ordering of this vector.
optim.control
a list of controls to be passed to "optim".
method
the method for optim.

Value

  • The return value "loglikMvdc" is the loglikelihood evaluated for the given value of "param".

    The return value of "fitMvdc" is an object of class "fitMvdc" containing slots:

  • estimatethe estimate of the parameters.
  • var.estlarge-sample variance estimate of the parameter estimator.
  • loglikloglikelihood at "est".
  • copulathe fitted copula.

See Also

Copula, fitCopula, gofCopula.

Examples

Run this code
gumbel.cop <- gumbelCopula(3, dim=2)
myMvd <- mvdc(gumbel.cop, c("exp","exp"), list(list(rate=2),list(rate=4)))
x <- rmvdc(myMvd, 1000)
fit <- fitMvdc(x, myMvd, c(1,1,2))
fit

#### Roger Koenker prepared a demo illustrating MLE for a Clayton AR(1)
#### copula model with identical, user-defined Student marginals
## demo("QARClayton")

Run the code above in your browser using DataLab