exchEVTest(x, N = 1000, estimator = "CFG", derivatives = "Cn", m = 100)
"CFG"
or
"Pickands"
; see Genest and Segers (2009)."An"
or "Cn"
.
The former should be used under the assumption of extreme-value
dependence. The latter is faster. See the second referencI. Kojadinovic and J. Yan (2010). Modeling Multivariate Distributions with Continuous Margins Using the copula R Package. Journal of Statistical Software, 34(9), pages 1-20.
exchTest
, gofCopula
.## Do these data come from exchangeable copulas?
exchEVTest(rcopula(gumbelCopula(3), 200))
exchEVTest(rcopula(claytonCopula(3), 200))
## Creating asymmetric data
khoudraji <- function(cop,n,a=0.6,b=0.95)
{
u <- rcopula(cop,n)
v <- matrix(runif(2*n),n,2)
x <- cbind(pmax(u[,1]^(1/a),v[,1]^(1/(1-a))),
pmax(u[,2]^(1/b),v[,2]^(1/(1-b))))
x
}
exchEVTest(khoudraji(gumbelCopula(3),200))
exchEVTest(khoudraji(claytonCopula(3),200))
Run the code above in your browser using DataLab