
gofEVCopula(copula, x, N = 1000, method = "mpl",
estimator = "CFG", m = 1000, print.every = 100,
optim.method = "Nelder-Mead")
"evCopula "
representing the
hypothesized extreme-value copula family."mpl"
(maximum pseudo-likelihood), "itau"
(inversion of
Kendall's tau) or "irho"
(inversion of Spearman's rho)."CFG"
(Caperaa-Fougeres-Genest) or "Pickands"
."print.every"
iterations. No progress is printed if it is nonpositive."optim"
.C. Genest, I. Kojadinovic, J. Nešlehová and J. Yan (2011). A goodness-of-fit test for bivariate extreme-value copulas. Bernoulli 17, 1, pages 253-275.
evCopula
, evTestC
, evTestA
,
evTestK
, gofCopula
, Anfun
.x <- rcopula(claytonCopula(3), 100)
## Does the Gumbel family seem to be a good choice?
gofEVCopula(gumbelCopula(1), x)
## The same with different estimation methods
gofEVCopula(gumbelCopula(1), x, method="itau")
gofEVCopula(gumbelCopula(1), x, method="irho")
## The same with different extreme-value copulas
gofEVCopula(galambosCopula(1), x)
gofEVCopula(galambosCopula(1), x, method="itau")
gofEVCopula(galambosCopula(1), x, method="irho")
gofEVCopula(huslerReissCopula(1), x)
gofEVCopula(huslerReissCopula(1), x, method="itau")
gofEVCopula(huslerReissCopula(1), x, method="irho")
gofEVCopula(tevCopula(0, df.fixed=TRUE), x)
gofEVCopula(tevCopula(0, df.fixed=TRUE), x, method="itau")
gofEVCopula(tevCopula(0, df.fixed=TRUE), x, method="irho")
Run the code above in your browser using DataLab