An.biv(x, w, estimator = c("CFG", "Pickands"), corrected = TRUE)
An(x, w)
An.biv
is called, x
has to
have two columns.An.biv
is called, a vector of points in [0,1]
where to evaluate the estimated bivariate Pickands dependence
function. If the multivariate estimator An
is used instead,
w
needs to be a matrix with the s"CFG"
(Cap"Pick
An.biv()
returns a vector containing the values of the
estimated Pickands dependence function at the points in w
(and
is the same as former Anfun()
). The function An
computes simultaneously the three corrected
multivariate estimators studied in Gudendorf and Segers (2011) at the
points in w
and retuns a list whose components are
w
.w
.w
.G. Gudendorf and J. Segers (2011). Nonparametric estimation of multivariate extreme-value copulas. arXiv:1107.2410v1.
evCopula
, A
, and evTestA
.
Further, evTestC
, evTestK
,
exchEVTest
, and gofEVCopula
.## True Pickands dependence functions
curve(A(gumbelCopula(4 ), x), 0, 1)
curve(A(gumbelCopula(2 ), x), add=TRUE, col=2)
curve(A(gumbelCopula(1.33), x), add=TRUE, col=3)
## CFG estimator
curve(An.biv(rCopula(1000, gumbelCopula(4 )), x), lty=2, add=TRUE)
curve(An.biv(rCopula(1000, gumbelCopula(2 )), x), lty=2, add=TRUE, col=2)
curve(An.biv(rCopula(1000, gumbelCopula(1.33)), x), lty=2, add=TRUE, col=3)
## Pickands estimator
curve(An.biv(rCopula(1000, gumbelCopula(4 )), x, estimator="Pickands"),
lty=3, add=TRUE)
curve(An.biv(rCopula(1000, gumbelCopula(2 )), x, estimator="Pickands"),
lty=3, add=TRUE, col=2)
curve(An.biv(rCopula(1000, gumbelCopula(1.33)), x, estimator="Pickands"),
lty=3, add=TRUE, col=3)
## Relationship between An.biv and An
u <- c(runif(100),0,1) # include 0 and 1
x <- rCopula(1000, gumbelCopula(4))
r <- An(x, cbind(1-u, u))
all.equal(r$CFG, An.biv(x, u))
all.equal(r$P, An.biv(x, u, estimator="Pickands"))
## A trivariate example
x <- rCopula(1000, gumbelCopula(4, dim = 3))
u <- matrix(runif(300), 100, 3)
w <- u / apply(u, 1, sum)
r <- An(x, w)
## Endpoint corrections are applied
An(x, cbind(1, 0, 0))
An(x, cbind(0, 1, 0))
An(x, cbind(0, 0, 1))
Run the code above in your browser using DataLab