data(cca.example)
res1 <- cca(cca.example) # with igraph 0.7, this should find 3 classes of sizes 218 391 144.
plot(res1, 1) # plot them
plot(res1, 2)
plot(res1, 3)
print (round(res1$modules[[1]]$cormat, 2)) # examine the correlation matrix for the 1st module
print (summary(res1$modules[[1]]$dtf)) # look at its variable ranges
plot(res1, 1, bw = TRUE) # Plot it again in a more journal-friendly format.
# now let's try setting the filter value too high
res2 <- cca(cca.example, filter.value = 0.001)
# With igraph 0.7, the above now finds 17 classes
# of sizes 216 1 1 371 1 1 1 1 1 1 1 1 11 141 1 1 2
# The small isolate classes can either be dropped manually, or by increasing filter.value
Run the code above in your browser using DataLab