# NOT RUN {
set.seed(1)
nsnps <- 100
N0 <- 5000
N1 <- 5000
## generate example LD matrix
library(mvtnorm)
nsamples = 1000
simx <- function(nsnps, nsamples, S, maf=0.1) {
mu <- rep(0,nsnps)
rawvars <- rmvnorm(n=nsamples, mean=mu, sigma=S)
pvars <- pnorm(rawvars)
x <- qbinom(1-pvars, 1, maf)
}
S <- (1 - (abs(outer(1:nsnps,1:nsnps,`-`))/nsnps))^4
X <- simx(nsnps,nsamples,S)
LD <- cor2(X)
maf <- colMeans(X)
## generate V (variance of estimated effect sizes)
varbeta <- Var.data.cc(f = maf, N = 5000, s = 0.5)
pp <- rnorm(nsnps, 0.2, 0.05)
pp <- pp/sum(pp)
corrected_cov(pp0 = pp, mu = 4, V = varbeta, Sigma = LD, thr = 0.95, nrep = 100)
# }
Run the code above in your browser using DataLab