Learn R Programming

⚠️There's a newer version (0.4.4) of this package.Take me there.

corrr

corrr is a package for exploring correlations in R. It focuses on creating and working with data frames of correlations (instead of matrices) that can be easily explored via corrr functions or by leveraging tools like those in the tidyverse. This, along with the primary corrr functions, is represented below:

You can install:

  • the latest released version from CRAN with
install.packages("corrr")
  • the latest development version from github with
install.packages("devtools")  # run this line if devtools is not installed
devtools::install_github("drsimonj/corrr")

Using corrr

Using corrr typically starts with correlate(), which acts like the base correlation function cor(). It differs by defaulting to pairwise deletion, and returning a correlation data frame (cor_df) of the following structure:

  • A tbl with an additional class, cor_df
  • An extra "rowname" column
  • Standardised variances (the matrix diagonal) set to missing values (NA) so they can be ignored.

API

The corrr API is designed with data pipelines in mind (e.g., to use %>% from the magrittr package). After correlate(), the primary corrr functions take a cor_df as their first argument, and return a cor_df or tbl (or output like a plot). These functions serve one of three purposes:

Internal changes (cor_df out):

  • shave() the upper or lower triangle (set to NA).
  • rearrange() the columns and rows based on correlation strengths.

Reshape structure (tbl or cor_df out):

  • focus() on select columns and rows.
  • stretch() into a long format.

Output/visualisations (console/plot out):

  • fashion() the correlations for pretty printing.
  • rplot() the correlations with shapes in place of the values.
  • network_plot() the correlations in a network.

Examples

library(MASS)
library(corrr)
set.seed(1)

# Simulate three columns correlating about .7 with each other
mu <- rep(0, 3)
Sigma <- matrix(.7, nrow = 3, ncol = 3) + diag(3)*.3
seven <- mvrnorm(n = 1000, mu = mu, Sigma = Sigma)

# Simulate three columns correlating about .4 with each other
mu <- rep(0, 3)
Sigma <- matrix(.4, nrow = 3, ncol = 3) + diag(3)*.6
four <- mvrnorm(n = 1000, mu = mu, Sigma = Sigma)

# Bind together
d <- cbind(seven, four)
colnames(d) <- paste0("v", 1:ncol(d))

# Insert some missing values
d[sample(1:nrow(d), 100, replace = TRUE), 1] <- NA
d[sample(1:nrow(d), 200, replace = TRUE), 5] <- NA

# Correlate
x <- correlate(d)
class(x)
#> [1] "cor_df"     "tbl_df"     "tbl"        "data.frame"
x
#> # A tibble: 6 x 7
#>   rowname         v1        v2        v3         v4       v5       v6
#>   <chr>        <dbl>     <dbl>     <dbl>      <dbl>    <dbl>    <dbl>
#> 1 v1       NA          0.710     0.709     0.000195  0.0214   -0.0435
#> 2 v2        0.710     NA         0.697    -0.0133    0.00928  -0.0338
#> 3 v3        0.709      0.697    NA        -0.0253    0.00109  -0.0201
#> 4 v4        0.000195  -0.0133   -0.0253   NA         0.421     0.442 
#> 5 v5        0.0214     0.00928   0.00109   0.421    NA         0.425 
#> 6 v6       -0.0435    -0.0338   -0.0201    0.442     0.425    NA

As a tbl, we can use functions from data frame packages like dplyr, tidyr, ggplot2:

library(dplyr)

# Filter rows by correlation size
x %>% filter(v1 > .6)
#> # A tibble: 2 x 7
#>   rowname    v1     v2     v3      v4      v5      v6
#>   <chr>   <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>
#> 1 v2      0.710 NA      0.697 -0.0133 0.00928 -0.0338
#> 2 v3      0.709  0.697 NA     -0.0253 0.00109 -0.0201

corrr functions work in pipelines (cor_df in; cor_df or tbl out):

x <- datasets::mtcars %>%
       correlate() %>%    # Create correlation data frame (cor_df)
       focus(-cyl, -vs, mirror = TRUE) %>%  # Focus on cor_df without 'cyl' and 'vs'
       rearrange() %>%  # rearrange by correlations
       shave() # Shave off the upper triangle for a clean result
#> 
#> Correlation method: 'pearson'
#> Missing treated using: 'pairwise.complete.obs'
       
fashion(x)
#>   rowname   am drat gear   wt disp  mpg   hp qsec carb
#> 1      am                                             
#> 2    drat  .71                                        
#> 3    gear  .79  .70                                   
#> 4      wt -.69 -.71 -.58                              
#> 5    disp -.59 -.71 -.56  .89                         
#> 6     mpg  .60  .68  .48 -.87 -.85                    
#> 7      hp -.24 -.45 -.13  .66  .79 -.78               
#> 8    qsec -.23  .09 -.21 -.17 -.43  .42 -.71          
#> 9    carb  .06 -.09  .27  .43  .39 -.55  .75 -.66
rplot(x)


datasets::airquality %>% 
  correlate() %>% 
  network_plot(min_cor = .2)
#> 
#> Correlation method: 'pearson'
#> Missing treated using: 'pairwise.complete.obs'

Copy Link

Version

Install

install.packages('corrr')

Monthly Downloads

10,872

Version

0.3.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Edgar Ruiz

Last Published

April 20th, 2019

Functions in corrr (0.3.2)

fashion

Fashion a correlation data frame for printing.
as_cordf

Coerce lists and matrices to correlation data frames
as_matrix

Convert a correlation data frame to matrix format
rplot

Plot a correlation data frame.
network_plot

Network plot of a correlation data frame
pair_n

Number of pairwise complete cases.
shave

Shave off upper/lower triangle.
stretch

Stretch correlation data frame into long format.
focus

Focus on section of a correlation data frame.
focus_if

Conditionally focus correlation data frame
first_col

Add a first column to a data.frame
correlate

Correlation Data Frame
corrr-package

corrr: Correlations in R
rearrange

Re-arrange a correlation data frame