## Gaussian
set.seed(20130310)
x=cbind(rbinom(200,1,.7),matrix(runif(200*9,0,1),nc=9))
y=x[,1]+sin(2*pi*x[,2])+5*(x[,4]-0.4)^2+rnorm(200,0,1)
G.Obj=cosso(x,y,family="Gaussian")
plot.cosso(G.Obj,plottype="Path")
if (FALSE) {
## Use all observations as knots
set.seed(20130310)
x=cbind(rbinom(200,1,.7),matrix(runif(200*9,0,1),nc=9))
y=x[,1]+sin(2*pi*x[,2])+5*(x[,4]-0.4)^2+rnorm(200,0,1)
G.Obj=cosso(x,y,family="Gaussian",nbasis=200)
## Clean up
rm(list=ls())
## Binomial
set.seed(20130310)
x=cbind(rbinom(200,1,.7),matrix(runif(200*9,0,1),nc=9))
trueProb=1/(1+exp(-x[,1]-sin(2*pi*x[,2])-5*(x[,4]-0.4)^2))
y=rbinom(200,1,trueProb)
B.Obj=cosso(x,y,family="Bin")
## Clean up
rm(list=ls())
## Cox
set.seed(20130310)
x=cbind(rbinom(200,1,.7),matrix(runif(200*9,0,1),nc=9))
hazard=x[,1]+sin(2*pi*x[,2])+5*(x[,4]-0.4)^2
surTime=rexp(200,exp(hazard))
cenTime=rexp(200,exp(-hazard)*runif(1,4,6))
y=cbind(time=apply(cbind(surTime,cenTime),1,min),status=1*(surTime
Run the code above in your browser using DataLab