#
# Find some stationary solutions with \code{Ncoefs=3}.
#
# (not run in R package installation as its compute intensive)
#
tmp <- findstysols(Nsims=10, tsx=x2, tsy=y2)
#
# Here are my results from this call
#
tmp
#
#$startpar
# [,1] [,2] [,3] [,4] [,5] [,6]
#[1,] -2.2547452 -0.77196922 -0.52060764 -0.8593779 0.6733086 1.4768199
#[2,] -2.3211605 -0.04410615 0.15945799 -1.5154560 -1.5176482 0.1374697
#[3,] -0.7792824 -0.85653735 0.40063430 0.9371025 0.1987466 -0.9809195
#[4,] -0.3141137 -0.13877435 -0.39190827 1.4200912 -0.1809564 0.5827172
#[5,] -1.3527352 0.78055909 -0.63661402 -0.2365094 -0.3829789 -0.8137181
#[6,] 0.3049843 -0.70033280 0.01900144 0.4765084 -0.7540503 -2.0909379
#[7,] 1.0726596 -1.09382977 0.62279794 0.3470011 1.1275294 0.8646476
#[8,] 0.9281181 -0.16476371 1.01723416 0.6716444 -0.6169555 0.5984466
#[9,] -1.2719359 -0.08608032 0.50967856 -0.9645608 0.4374194 0.4465487
#[10,] -0.8540283 1.07240182 0.22499203 -0.7814163 0.5153788 -0.4387466
#
#[1,] 0.8654740
#[2,] -4.0003431
#[3,] -0.9556344
#[4,] 0.7849405
#[5,] -4016.6360353
#[6,] -1.9475162
#[7,] 1.4951978
#[8,] 0.2847806
#[9,] 2.4693086
#[10,] 166.0928567
#
#$convergence
#[1] 0 0 1 1 10 0 1 1 0 1
#
#$minvar
#[1] 5.409046e-07 2.187609e-07 2.270164e-07 1.975476e-07 1.941969e-07
#[6] 1.650412e-07 2.410830e-07 2.103711e-07 2.064031e-07 2.122840e-07
#
#$pvals
#[1] 0.32 0.45 0.00 0.39 0.24 0.28 0.54 0.37 0.32 0.44
#
#
# From the $convergence list only 4 converged (solns 1, 2, 6 and 9)
#
# Of these 4, what are the associated p-values?
#
tmp$pvals[tmp$convergence==0]
#[1] 0.32 0.45 0.28 0.32
#
# So, all of these are > 0.05, so apparently each of these solutions are
# stationary.
#
# We can further examine these solutions with \code{\link{COEFbothscale}}
# and optionally \code{\link{COEFscale}}.
#
# E.g.
COEFbothscale(tmp)
#
# This extracts the solution vectors for those where the optimizer converged
# and where the solutions are deemed stationary. Then those are subjected
# to a hierarchical clustering and plotted. So, we can see which solutions
# are similar and which are different.
#
# The function \code{\link{LCTSres}} can produce pictures of the results
# for particular solutions. E.g. the linear combination vectors, the combined
# series and its estimated spectrum.
Run the code above in your browser using DataLab