Learn R Programming

covtracer

Tools for contextualizing tests, built using covr test traces. This package provides utilities for linking an assortment of test and package information to paint a more complete picture of how a test was performed.

flowchart LR
    tests[Tests] <--> traces[Traced Exprs] <--> code[Package Code] <--> docs[Package Documentation]

Installation

To install, use remotes to install directly from GitHub

Functionality hinges heavily on coverage objects prepared using covr (≥ 3.5.1.9003). To ensure suggested dependency requirements are met, install with dependencies = TRUE (satisfy all dependencies).

# will install covr >= v3.5.1.9003 for examples
remotes::install_github("Genentech/covtracer", dependencies = TRUE)

Motivation

Tests are not black boxes. When it comes to verifying behaviors of code, we can use observations about the code that is executed by a test to build a more complete picture of exactly what the test does. This is a core part of software validation. By combining information about each test, the tested package code and linking that code to package documentation, we can link documented behaviors to their respective tests.

Getting Started

Test traces are connected to evaluated code using covr (≥ 3.5.1.9003). Likewise, a new option flag (covr.record_tests) must be set in order to record tests alongside the coverage traces. Finally, the package to evaluate must be installed with source references in order to map all the components together.

That’s a lot to configure, but if you’re in a position where this test data is valuable hopefully it’s worth the setup.

library(covtracer)

# additional demo packages
library(dplyr)
library(withr)
library(covr)

withr::with_temp_libpaths({
  pkg <- system.file("examplepkg", package = "covtracer")

  install.packages(
    pkg,
    type = "source",
    repos = NULL,
    quiet = TRUE,
    INSTALL_opts = c("--with-keep.source", "--install-tests")
  )

  options(covr.record_tests = TRUE)
  cov <- covr::package_coverage(pkg)

  ttdf <- test_trace_df(cov)
})

There’s a lot of info in the resulting data.frame, but we’ll focus on just the critical piece, showing which tests evaluate code related to which documented behaviors. Below we show how one might map unit tests to evaluated, documented objects.

Note: Below we ignore documentation for datasets and S4 class constructors. Although these are defined in the package, they don’t map to testable lines of code because they are constructed when the package is built.

traceability_matrix <- ttdf %>%
  filter(!doctype %in% c("data", "class")) %>% # ignore objects without testable code
  select(test_name, file) %>%
  filter(!duplicated(.)) %>%
  arrange(file)

traceability_matrix
#>                                            test_name                       file
#> 1  Example R6 Person class public methods are traced             Accumulator.Rd
#> 2           S4Example increment generic method works                  Person.Rd
#> 3  Example R6 Person class public methods are traced                  Person.Rd
#> 4           S4Example increment generic method works                   Rando.Rd
#> 5                                               <NA>                   Rando.Rd
#> 6                                               <NA>                   adder.Rd
#> 7           S4Example increment generic method works                   adder.Rd
#> 8           S4Example increment generic method works      complex_call_stack.Rd
#> 9           S4Example increment generic method works  deeper_nested_function.Rd
#> 10          S4Example increment generic method works              hypotenuse.Rd
#> 11          S4Example increment generic method works               increment.Rd
#> 12                      S4Example names method works  names-S4Example-method.Rd
#> 13                                              <NA> names-S4Example2-method.Rd
#> 14          S4Example increment generic method works         nested_function.Rd
#> 15                                              <NA>              rd_sampler.Rd
#> 16          S4Example increment generic method works      recursive_function.Rd
#> 17                                              <NA>        reexport_example.Rd
#> 18                                              <NA>               reexports.Rd
#> 19          S4Example increment generic method works         s3_example_func.Rd
#> 20              S4 Generic Call: show(<myS4Example>)   show-S4Example-method.Rd
#> 21                                              <NA>                       <NA>

We can quickly see which functions or methods are entirely untested.

Use Cases

The data.frame returned by test_trace_df contains a ton of information, and we can measure a few dimensions of the quality of tests with some relatively straightforward analysis.

Traceability Matrix

Perhaps the most immediate use case is to map unit tests to documented behaviors.

ttdf %>%
  filter(!doctype %in% c("data", "class")) %>% # ignore objects without testable code
  select(test_name, file) %>%
  filter(!duplicated(.)) %>%
  arrange(file)
#>                                            test_name                       file
#> 1  Example R6 Person class public methods are traced             Accumulator.Rd
#> 2           S4Example increment generic method works                  Person.Rd
#> 3  Example R6 Person class public methods are traced                  Person.Rd
#> 4           S4Example increment generic method works                   Rando.Rd
#> 5                                               <NA>                   Rando.Rd
#> 6                                               <NA>                   adder.Rd
#> 7           S4Example increment generic method works                   adder.Rd
#> 8           S4Example increment generic method works      complex_call_stack.Rd
#> 9           S4Example increment generic method works  deeper_nested_function.Rd
#> 10          S4Example increment generic method works              hypotenuse.Rd
#> 11          S4Example increment generic method works               increment.Rd
#> 12                      S4Example names method works  names-S4Example-method.Rd
#> 13                                              <NA> names-S4Example2-method.Rd
#> 14          S4Example increment generic method works         nested_function.Rd
#> 15                                              <NA>              rd_sampler.Rd
#> 16          S4Example increment generic method works      recursive_function.Rd
#> 17                                              <NA>        reexport_example.Rd
#> 18                                              <NA>               reexports.Rd
#> 19          S4Example increment generic method works         s3_example_func.Rd
#> 20              S4 Generic Call: show(<myS4Example>)   show-S4Example-method.Rd
#> 21                                              <NA>                       <NA>

Finding Untested Behaviors

Once we can map unit testing to documentation, we can filter down to only documentation that is not covered by any test.

ttdf %>%
  filter(!doctype %in% c("data", "class")) %>% # ignore objects without testable code
  select(test_name, count, alias, file) %>%
  filter(is.na(count)) %>%
  arrange(alias)
#>   test_name count                   alias                       file
#> 1      <NA>    NA                   Rando                   Rando.Rd
#> 2      <NA>    NA                   adder                   adder.Rd
#> 3      <NA>    NA                    help               reexports.Rd
#> 4      <NA>    NA names,S4Example2-method names-S4Example2-method.Rd
#> 5      <NA>    NA                  person                       <NA>
#> 6      <NA>    NA              rd_sampler              rd_sampler.Rd
#> 7      <NA>    NA        reexport_example        reexport_example.Rd
#> 8      <NA>    NA               reexports               reexports.Rd

Filter For Only Directly Tested Behaviors

Some tests evaluate a broad set of functionality by calling functions that themselves call out to internal package functions. This is often perfectly fine, since the mechanisms of calling those internal functions are limited by the surfaced user-facing functions. Nevertheless, whether a function is called directly is a good indication of the “unit”-ness of a unit test. You may consider only the coverage of directly tested functions.

ttdf %>%
  filter(!doctype %in% c("data", "class")) %>% # ignore objects without testable code
  select(direct, alias) %>%
  group_by(alias) %>%
  summarize(any_direct_tests = any(direct, na.rm = TRUE)) %>%
  arrange(alias)
#> # A tibble: 21 × 2
#>   alias              any_direct_tests
#>   <chr>              <lgl>           
#> 1 Accumulator        TRUE            
#> 2 Person             TRUE            
#> 3 Rando              TRUE            
#> 4 adder              TRUE            
#> 5 complex_call_stack TRUE            
#> # ℹ 16 more rows

Copy Link

Version

Install

install.packages('covtracer')

Monthly Downloads

584

Version

0.0.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Szymon Maksymiuk

Last Published

January 30th, 2026

Functions in covtracer (0.0.2)

pkg_srcrefs_df

Create a data.frame of package srcref objects
pkg_srcrefs

Extract all the srcref objects of objects within a package namespace
package_check_has_keep_source

Verify that the package collection contains srcref information
join_on_containing_srcrefs

Join srcref data.frames by intersection of srcref spans
with_pseudo_srcref

For consistency, stub calls with srcref-like attributes
test_description_test_that_describe

Parse the test description from a describe call
test_description_test_that_describe_it

Parse the test description from a it call
match_containing_srcrefs

Match srcrefs against srcrefs that contain them
test_description

Parse a test description from the calling expression
test_trace_mapping

Create a data.frame mapping tests to coverage traces
test_description_test_that

Parse the test description from a test_that call
test_trace_df

Build a traceability matrix that links documented behaviors to unit tests
test_srcrefs

Extract test srcref objects
test_srcrefs_df

Create a data.frame of coverage test srcref objects
srcref_str

Convert a srcref into a string
trace_srcrefs

Extract srcref objects from coverage object traces
srcrefs

Retrieve srcrefs
trace_srcrefs_df

Create a data.frame of coverage trace srcref objects
srcref_expr

Parse the expression associated with a srcref
as.package

A simple alternative to devtools::as.package
expr_str

Convert an expression, call or symbol to a single-line string
coverage_has_recorded_tests

Test that the coverage object retains testing information
as.data.frame.list_of_srcref

Coerce a list_of_srcref object to a data.frame
coverage_get_tests

Retrieve test traces from a coverage object
Rd_df

Create a tabular representation of man file information
flat_map_srcrefs

Map srcrefs over an iterable object, Filtering non-srcref results
as_list_of_srcref

Create an S3 list of srcref objects
coverage_check_has_recorded_tests

Check that the coverage object retains testing information
as_test_desc

Wrap object in test description derivation data
get_namespace_object_names

Get namespace exports, filtering methods tables and definitions
is_srcref

Test whether an object is a srcref object
new_empty_test_trace_tally

Build an empty covr-style test trace mapping
obj_namespace_name

Get namespace export namespace name
getSrcFilepath

Get the full path to the srcref file
format.list_of_srcref

Format a list_of_srcref object