coxsei(x,...)
# S3 method for default
coxsei(x,y,delta,id,par.init,m=2,mit=1000,tr=TRUE,
method="L-BFGS-B",lower=c(rep(-Inf,ncol(x)),-Inf,0),
upper=rep(Inf,ncol(x) + 2),...)
# S3 method for coxsei
print(x,...)
# S3 method for coxsei
plot(x,...)
# S3 method for coxsei
summary(object,...)
Arguments
x
a covariate matrix, or an object of class coxsei
y
a vector of observed times
delta
a vector of event indicators: 1=event, 0=censoring
id
the individual/group id to which the event/censoring time
correspond
par.init
initial parameter guess to start the iteration
m
lag parameter as in m-dependence
mit
max number of iteration
tr
whether to trace the optimization or not
method
method used in optimization
lower
the lower bound of the parameter space if the L-BFGS-B
method of optimization is used.
upper
the upper bound of the paramter space if the L-BFGS-B methodof
optimaization is used.
...
further arguments to plot.stepfun
object
an object of the class coxsei
Value
an object of class coxsei, basically a list of the following
components
coefficients
a numeric vector of coefficients
vcov
the variance-covariance matrix
zval
the vector of z-value of the Wald test statistic
pval
the vector of p-values
details.par
a list returned by theoptim routine
cintfn
a step function as the estimated cumulative baseline
intensity function
cintvar
a step function as the variance of the cumulative
baseline intensity function estimator
details.cint
a list containing more details about the cint
References
Feng Chen and Kani Chen. (2014). Modeling Event Clustering Using the m-Memory
Cox-Type
Self-Exciting Intensity Model. International Journal of Statistics and
Probability. 3(3): 126-137. doi:10.5539/ijsp.v3n3p126 URL:
http://dx.doi.org/10.5539/ijsp.v3n3p126
Feng Chen and Kani Chen. (2014). Case-cohort analysis of clusters of
recurrent events. 20(1): 1-15. doi: 10.1007/s10985-013-9275-3