# NOT RUN {
# example
#mean squared error to check the accuracy of ind method using
#censored data generated from MA model.
# data generated through MA model considering 60% censoring rate
#(Left censoring) and missing rate is equal to zero
library(cpcens)
sim = MA1.data ( n=500 , N = 100 , K = 5 , eps = 1 , rho=0.6,
mu = 0, siga = 1, rates = c(0.6,NA), Mrate=0 )
data=sim$data
n=500
N=100
# training and test
data.train = sim$data[,1:(n-5)]
data.test = sim$data[,(n-4):n]
##If pen is equal to zero, penalty term will be equal to 2*log(n)
indma.chpts=indMA(data.train, pen=0)
indma.mse = predma.mse( indma.chpts , data.train , data.test )
indma.mse
#example
#mean squared error to check the accuracy of dcbs method using
#censored data generated from MA model.
library(cpcens)
# data generated through MA model considering 20% censoring rate
#(Right censoring) and missing rate is equal to zero
sim = MA1.data ( n=500 , N = 100 , K = 5 , eps = 1 , rho=0.4,
mu = 0, siga = 1, rates = c(NA,0.2), Mrate=0 )
data=sim$data
n=500
N=100
# training and test
data.train = sim$data[,1:(n-5)]
data.test = sim$data[,(n-4):n]
dcbsma.chpts= Bin_segMA(data.train, 10)
dcbsma.mse = predma.mse( dcbsma.chpts , data.train , data.test )
dcbsma.mse
#example
#mean squared error to check the accuracy of mv method using
#censored data generated from MA model.
library(cpcens)
# data generated through MA model considering 60% censoring rate
#(Right censoring) and missing rate is equal to zero
sim = MA1.data ( n=500 , N = 100 , K = 5 , eps = 1 , rho=0.4,
mu = 0, siga = 1, rates = c(NA,0.6), Mrate=0 )
data=sim$data
n=500
N=100
# training and test
data.train = sim$data[,1:(n-5)]
data.test = sim$data[,(n-4):n]
pmv = PELT.MVma( data.train , 101*log(dim(data.train)[2]) )
mv.chpts = rep( rev( pmv$cpts )[1] , N )
mv.mse = predma.mse( mv.chpts , data.train , data.test )
# }
Run the code above in your browser using DataLab