Last chance! 50% off unlimited learning
Sale ends in
Probability mass function, distribution function, quantile function and random generation for the Complex Biparametric Pearson (CBP) distribution with parameters
dcbp(x, b, gamma)pcbp(q, b, gamma, lower.tail = TRUE)
qcbp(p, b, gamma, lower.tail = TRUE)
rcbp(n, b, gamma)
pcbp(q, b, gamma, lower.tail = TRUE)
qcbp(p, b, gamma, lower.tail = TRUE)
rcbp(n, b, gamma)
vector of (non-negative integer) quantiles.
parameter b (real)
parameter gamma (positive)
vector of quantiles.
if TRUE (default), probabilities are
vector of probabilities.
number of observations. If length(n) > 1
, the length is taken to be the number required.
dcbp
gives the pmf, pcbp
gives the distribution function, qcbp
gives the quantile function and rcbp
generates random values.
The CBP distribution with parameters
The CBP is a particular case of the CTP when
The mean and the variance of the CBP distribution are
It is always overdispersed.
RCS2003cpd
Probability mass function, distribution function, quantile function and random generation for the CTP distribution: dctp
, pctp
, qctp
and rctp
.
Functions for maximum-likelihood fitting of the CBP distribution: fitcbp
.
# NOT RUN {
# Examples for the function dcbp
dcbp(3,2,5)
dcbp(c(3,4),2,5)
# Examples for the function pcbp
pcbp(3,2,3)
pcbp(c(3,4),2,3)
# Examples for the function qcbp
qcbp(0.5,2,3)
qcbp(c(.8,.9),2,3)
# Examples for the function rcbp(4,1,3)
# }
Run the code above in your browser using DataLab