Learn R Programming

cpd (version 0.3.3)

ebw: The Extended Biparametric Waring (EBW) Distribution

Description

Probability mass function, distribution function, quantile function and random generation for the Extended Biparametric Waring (EBW) distribution with parameters \(\alpha\) and \(\gamma\) (or \(\rho\)).

Usage

debw(x, alpha, gamma, rho)

pebw(q, alpha, gamma, rho, lower.tail = TRUE)

qebw(p, alpha, gamma, rho, lower.tail = TRUE)

rebw(n, alpha, gamma, rho, lower.tail = TRUE)

Value

debw gives the pmf, pebw gives the distribution function, qebw gives the quantile function and rebw generates random values.

If \(\alpha > 0\) the probability mass function, distribution function, quantile function and random generation function for the UGW\((\alpha,\alpha,\rho)\) distribution arise.

If \(\alpha < 0\) the probability mass function, distribution function, quantile function and random generation function for the CTP\((\alpha,0,\gamma)\) distribution arise.

Arguments

x

vector of (non-negative integer) quantiles.

alpha

parameter alpha (real)

gamma

parameter \(\gamma\) (positive)

rho

parameter rho (positive)

q

vector of quantiles.

lower.tail

if TRUE (default), probabilities are \(P(X<=x)\), otherwise, \(P(X>x)\).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The EBW distribution with parameters \(\alpha\) and \(\gamma\) has pmf $$f(x|a,\alpha,\gamma) = C \Gamma(\alpha+x)^2 / (\Gamma(\gamma+x) x!), x=0,1,2,...$$ where \(\Gamma(·)\) is the gamma function and $$C = \Gamma(\gamma-\alpha^2 / (\Gamma(\alpha)^2 \Gamma(\gamma-2a))$$ the normalizing constant.

There is an alternative parametrization in terms of \(\alpha\) and \(\rho=\gamma-2\alpha>0\) when \(\alpha>0\). So, introduce only \(\alpha\) and \(\gamma\) or \(\alpha\) and \(\rho\), depending on the parametrization you wish to use.

The mean and the variance of the EBW distribution are \(E(X)=\mu=\alpha^2/(\gamma-2\alpha-1)\) and \(Var(X)=\mu(\mu+\gamma-1)/(\gamma-2\alpha-2)\) so \(\gamma > 2a + 2\).

It is underdispersed if \(\alpha < - (\mu + 1) / 2\), equidispersed if \(\alpha = - (\mu + 1) / 2\) or overdispersed if \(\alpha > - (\mu + 1) / 2\). In particular, if \(\alpha >= -0.5\) the EBW is overdispersed, whereas if \(\alpha < -1\) the EBW is underdispersed. In the case \(-1 < \alpha <= -0.5\), the EBW may be under-, equi- or overdispersed depending on the value of \(\gamma\).

References

RCS2003cpd

RCSO2004cpd

ROC2018cpd

See Also

Functions for maximum-likelihood fitting of the CTP and CBP distributions: fitctp and fitcbp.

Examples

Run this code
# Examples for the function dctp
debw(3,1,rho=5)
debw(c(3,4),2,rho=5)

# Examples for the function pebw
pebw(3,2,rho=5)
pebw(c(3,4),2,rho=5)

# Examples for the function qebw
qebw(0.5,-2.1,gamma=0.1)
qebw(c(.8,.9),-2.1,gamma=0.1)
qebw(0.5,2,rho=5)
qebw(c(.8,.9),2,rho=5)

# Examples for the function rebw
rebw(10,2,rho=5)
rebw(10,-2.1,gamma=5)

Run the code above in your browser using DataLab