Wrapper of mcmc_pol
mcmc_pol_wrapper(
df,
seed,
alpha_init = 1.5,
theta_init = 0.5,
m_alpha = 0,
s_alpha = 10,
a_theta = 1,
b_theta = 1,
a_pseudo = 10,
b_pseudo = 1,
pr_power = 0.5,
iter = 20000L,
thin = 20L,
burn = 100000L,
freq = 1000L,
invts = 1,
mc3_or_marg = TRUE,
x_max = 1e+05
)
A list returned by mcmc_pol
A data frame with at least two columns, x & count
Integer for set.seed
Real number greater than 1, initial value of the parameter
Real number in (0, 1], initial value of the parameter
Real number, mean of the prior normal distribution for alpha
Positive real number, standard deviation of the prior normal distribution for alpha
Positive real number, first parameter of the prior beta distribution for theta; ignored if pr_power = 1.0
Positive real number, second parameter of the prior beta distribution for theta; ignored if pr_power = 1.0
Positive real number, first parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0
Positive real number, second parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0
Real number in [0, 1], prior probability of the discrete power law
Positive integer representing the length of the MCMC output
Positive integer representing the thinning in the MCMC
Non-negative integer representing the burn-in of the MCMC
Positive integer representing the frequency of the sampled values being printed
Vector of the inverse temperatures for Metropolis-coupled MCMC (if mc3_or_marg = TRUE) or power posterior (if mc3_or_marg = FALSE)
Boolean, is Metropolis-coupled MCMC to be used? Ignored if invts = c(1.0)
Scalar (default 100000), positive integer limit for computing the normalising constant