partial_dependence_plot
is for generating a partial dependence plot.
get_partial_dependence_plots
is for ploting partial dependence of all vairables in x_list.
partial_dependence_plot(model, x, x_train, n.trees = NULL)get_partial_dependence_plots(
model,
x_train,
x_list,
n.trees = NULL,
dir_path = getwd(),
save_data = TRUE,
plot_show = FALSE,
parallel = FALSE
)
A data frame of training with predicted prob or score.
The name of an independent variable.
A data.frame with independent variables.
Number of trees for best.iter of gbm.
Names of independent variables.
The path for periodically saved graphic files.
Logical, save results in locally specified folder. Default is FALSE.
Logical, show model performance in current graphic device. Default is FALSE.
Logical, parallel computing. Default is FALSE.
# NOT RUN {
sub = cv_split(UCICreditCard, k = 30)[[1]]
dat = UCICreditCard[sub,]
dat = re_name(dat, "default.payment.next.month", "target")
dat = data_cleansing(dat, target = "target", obs_id = "ID",
occur_time = "apply_date", miss_values = list("", -1))
train_test = train_test_split(dat, split_type = "OOT", prop = 0.7,
occur_time = "apply_date")
dat_train = train_test$train
dat_test = train_test$test
x_list = c("PAY_0", "LIMIT_BAL", "PAY_AMT5", "PAY_3", "PAY_2")
Formula = as.formula(paste("target", paste(x_list, collapse = ' + '), sep = ' ~ '))
set.seed(46)
lr_model = glm(Formula, data = dat_train[, c("target", x_list)], family = binomial(logit))
#plot partial dependency of one variable
partial_dependence_plot(model = lr_model, x ="LIMIT_BAL", x_train = dat_train)
#plot partial dependency of all variables
pd_list = get_partial_dependence_plots(model = lr_model, x_list = x_list[1:2],
x_train = dat_train, save_data = FALSE,plot_show = TRUE)
# }
Run the code above in your browser using DataLab