## Not run:
# # example for 'crlmm' option
# library(ff)
# library(crlmm)
# ## to enable paralellization, set to TRUE
# if(FALSE){
# library(snow)
# library(doSNOW)
# ## with 10 workers
# cl <- makeCluster(10, type="SOCK")
# registerDoSNOW(cl)
# }
# ## path to idat files
# datadir <- "/thumper/ctsa/snpmicroarray/illumina/IDATS/370k"
# ## read in your samplesheet
# samplesheet = read.csv(file.path(datadir, "HumanHap370Duo_Sample_Map.csv"), header=TRUE, as.is=TRUE)
# samplesheet <- samplesheet[-c(28:46,61:75,78:79), ]
# arrayNames <- file.path(datadir, unique(samplesheet[, "SentrixPosition"]))
# arrayInfo <- list(barcode=NULL, position="SentrixPosition")
# cnSet <- genotype.Illumina(sampleSheet=samplesheet,
# arrayNames=arrayNames,
# arrayInfoColNames=arrayInfo,
# cdfName="human370v1c",
# batch=rep("1", nrow(samplesheet)))
#
# ## End(Not run)
## Not run:
# # example for 'krlmm' option
# library(crlmm)
# library(ff)
# # line below is an optional step for krlmm to initialise 16 workers
# # options("krlmm.cores" = 16)
# # read in raw X and Y intensities output by GenomeStudio's GenCall genotyping module
# XY = readGenCallOutput(c("HumanOmni2-5_4v1_FinalReport_83TUSCAN.csv","HumanOmni2-5_4v1_FinalReport_88CHB-JPT.csv"),
# cdfName="humanomni25quadv1b",
# verbose=TRUE)
# krlmmResult = genotype.Illumina(XY=XY,
# cdfName=ThiscdfName,
# call.method="krlmm",
# verbose=TRUE)
#
# # example for 'krlmm' option with known genotype call for some SNPs and samples
# library(VGAM)
# hapmapCalls = load("hapmapCalls.rda")
# # hapmapCalls should have rownames and colnames corresponding to XY featureNames and sampleNames
# krlmmResult = genotype.Illumina(XY=XY,
# cdfName=ThiscdfName,
# call.method="krlmm",
# trueCalls=hapmapCalls,
# verbose=TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab