library(oligoClasses)
data(cnSetExample2)
table(batch(cnSetExample2))
sample.index <- which(batch(cnSetExample2) == "CUPID")
## A single SNP
pr <- predictionRegion(cnSetExample2[1:4, sample.index], copyNumber=0:4)
gt <- calls(cnSetExample2[1:4, sample.index])
lim <- c(6,13)
xyplot(B~A|snpid, data=cnSetExample2[1:4, sample.index],
predictRegion=pr,
panel=ABpanel,
pch=21,
fill=c("red", "blue", "green3")[gt],
xlim=lim, ylim=lim)
## multiple SNPs, prediction regions for 3 batches
## Not run:
# tab <- table(batch(cnSetExample2))
# bns <- names(tab)[tab > 50]
# sample.index <- which(batch(cnSetExample2)
# pr <- predictionRegion(cnSetExample2[1:10, sample.index], copyNumber=0:4)
# gt <- as.integer(calls(cnSetExample2[1:10, sample.index]))
# xyplot(B~A|snpid, data=cnSetExample2[1:10, sample.index],
# predictRegion=pr,
# panel=ABpanel,
# pch=21,
# fill=c("red", "blue", "green3")[gt],
# xlim=c(6,12), ylim=c(6,12))
#
# ## nonpolymorphic markers
# data(cnSetExample2)
# tab <- table(batch(cnSetExample2))
# bns <- names(tab)[tab > 50]
# sample.index <- which(batch(cnSetExample2)
# np.index <- which(!isSnp(cnSetExample2))[1:10]
# taus <- tau2(cnSetExample)[np.index, , , ]
# pr <- predictionRegion(cnSetExample2[np.index, sample.index],
# copyNumber=0:4)
# pp <- posteriorProbability(cnSetExample2[np.index, sample.index],
# predictRegion=pr,
# copyNumber=0:4)
# ## End(Not run)
Run the code above in your browser using DataLab