LogisticKadaneBetaGammaLogisticKadaneBetaGamma is the class for the logistic model in the parametrization
of KadaneDickeyWinklerSmithPeters1980;textualcrmPack,
using a beta and a gamma distribution as the model priors.
LogisticKadaneBetaGamma(theta, xmin, xmax, alpha, beta, shape, rate).DefaultLogisticKadaneBetaGamma()
(proportion)
the target toxicity probability.
(number)
the minimum of the dose range.
(number)
the maximum of the dose range.
(number)
the first shape parameter of the Beta prior distribution
rho0 = p(xmin) the probability of a DLT at the minimum dose xmin.
(number)
the second shape parameter of the Beta prior distribution
rho0 = p(xmin) the probability of a DLT at the minimum dose xmin.
(number)
the shape parameter of the Gamma prior distribution
gamma the dose with target toxicity probability theta.
(number)
the rate parameter of the Gamma prior distribution
gamma the dose with target toxicity probability theta.
theta(proportion)
the target toxicity probability.
xmin(number)
the minimum of the dose range.
xmax(number)
the maximum of the dose range.
alpha(number)
the first shape parameter of the Beta prior distribution
of rho0 = p(xmin) the probability of a DLT at the minimum dose xmin.
beta(number)
the second shape parameter of the Beta prior distribution
of rho0 = p(xmin) the probability of a DLT at the minimum dose xmin.
shape(number)
the shape parameter of the Gamma prior distribution
of gamma the dose with target toxicity probability theta.
rate(number)
the rate parameter of the Gamma prior distribution
of gamma the dose with target toxicity probability theta.
Let rho0 = p(xmin) be the probability of a DLT at the minimum dose
xmin, and let gamma be the dose with target toxicity probability theta,
i.e. \(p(gamma) = theta\). Then it can easily be shown that the logistic
regression model has intercept
$$[gamma * logit(rho0) - xmin * logit(theta)] / [gamma - xmin]$$
and slope
$$[logit(theta) - logit(rho0)] / [gamma - xmin].$$
The prior for gamma, is $$gamma ~ Gamma(shape, rate).$$.
The prior for rho0 = p(xmin), is $$rho0 ~ Beta(alpha, beta).$$
ModelLogNormal, LogisticKadane.
my_model <- LogisticKadaneBetaGamma(
theta = 0.3,
xmin = 0,
xmax = 7,
alpha = 1,
beta = 19,
shape = 0.5625,
rate = 0.125
)
Run the code above in your browser using DataLab