#simulate competing risks data
set.seed(10)
ftime <- rexp(200)
fstatus <- sample(0:2,200,replace=TRUE)
cov <- matrix(runif(1000),nrow=200)
dimnames(cov)[[2]] <- c('x1','x2','x3','x4','x5')
#fit LASSO
fit <- crrp(ftime, fstatus, cov, penalty="LASSO")
#use BIC to select tuning parameters
beta <- fit$beta[, which.min(fit$BIC)]
beta.se <- fit$SE[, which.min(fit$BIC)]
#fit adaptive LASSO
weight <- 1/abs(crr(ftime, fstatus, cov)$coef)
fit2 <-crrp(ftime, fstatus, cov, penalty="LASSO", penalty.factor=weight, weighted=TRUE)
beta2 <- fit2$beta[, which.min(fit2$BIC)]
beta2.se <- fit2$SE[, which.min(fit2$BIC)]
Run the code above in your browser using DataLab