# simulated data set
library(mvtnorm)
n <- 400
mu1 <- c(-1.5,-0.5)
Sigma1 <- matrix(c(1, -0.175,-0.175,1),ncol=2)
agev <- as.vector(sample(seq(5,6,0.1),n,replace=TRUE))
beta1 <- 0.2
z <- rmvnorm(n,mu1,Sigma1)
zz <- cbind(z[,1]+beta1*agev,z[,2]+beta1*agev)
dat <- cbind(zz[,1]>0,zz[,2]>0,agev)
colnames(dat) <- c("y1","y2","age")
data0 <- data.frame(dat)
attach(data0)
# equal effect of age for all the covariates
y <- cbind(y1,y2)
fit0 <- MleCslogistic(y~age)
fit0
summary(fit0)
# different effects: only intercept
fit1 <- MleCslogistic(y~age,type=FALSE)
fit1
summary(fit1)
# different effects: all the covariates
fit2 <- MleCslogistic(y~age,type=FALSE,intercept=FALSE)
fit2
summary(fit2)Run the code above in your browser using DataLab