Learn R Programming

ctmm (version 0.2.8)

ctmm-package: Continuous-time movement modeling

Description

Description: Functions for identifying, fitting, and applying continuous-space, continuous-time stochastic movement models to animal tracking data. The methods are based on those introduced in Fleming et al. (2014-2015).

Arguments

Details

ll{ Package: ctmm Type: Package Version: 0.2.8 Date: 2015-08-25 License: GPL-3 }

References

C. H. Fleming, J. M. Calabrese, T. Mueller, K.A. Olson, P. Leimgruber, and W. F. Fagan. (2014). From fine-scale foraging to home ranges: A semi-variance approach to identifying movement modes across spatiotemporal scales. http://www.jstor.org/discover/10.1086/675504{The American Naturalist, 183(5), E154-E167}. C. H. Fleming and J. M. Calabrese and T. Mueller and K. A. Olson and P. Leimgruber and W. F. Fagan (2014). Non-Markovian maximum likelihood estimation of autocorrelated movement processes http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12176/abstract{Methods in Ecology and Evolution, 5(5) 462-472}. C. H. Fleming and Y. Subasi and J. M. Calabrese. (2015). A maximum-entropy description of animal movement. http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.032107{Physical Review E, 91, 032107}. C. H. Fleming and W. F. Fagan and T. Mueller and K. A. Olson and P. Leimgruber and J. M. Calabrese (2015). Rigorous home-range estimation with movement data: A new autocorrelated kernel-density estimator. http://www.esajournals.org/doi/abs/10.1890/14-2010.1{Ecology, 96(5), 1182-1188}.