Learn R Programming

ctmm (version 0.2.8)

summary.akde: Summarize an autocorrelated kernel density estimate

Description

This function returns a list of biologically interesting parameters in human readable format, as derived from an autocorrelated kernel density estimate.

Usage

## S3 method for class 'akde':
summary(object,alpha=0.05,...)

Arguments

object
An akde autocorrelated kernel-density estimate from the output of akde.
alpha
Significance level for parameter estimates.
...
Unused options.

Value

  • A matrix with low, maximum likelihood, and high estimates for the following parameters: [object Object]

References

C. H. Fleming and W. F. Fagan and T. Mueller and K. A. Olson and P. Leimgruber and J. M. Calabrese (2015). Rigorous home-range estimation with movement data: A new autocorrelated kernel-density estimator. http://www.esajournals.org/doi/abs/10.1890/14-2010.1{Ecology, 96(5), 1182-1188}.

See Also

akde.

Examples

Run this code
# Load package and data
library(ctmm)
data(buffalo)

# Extract movement data for a single animal
cilla <- buffalo[[1]]

# Find the best OU movement model
# also see help(variogram.fit)
m1 <- ctmm(tau=6*24*60^2)
M1 <- ctmm.fit(cilla,m1)

# Estimate and summarize the AKDE
KD1 <- akde(cilla,M1)
summary(KD1)

Run the code above in your browser using DataLab