Learn R Programming

ctmm (version 0.3.2)

ctmm-package: Continuous-time movement modeling

Description

Description: Functions for identifying, fitting, and applying continuous-space, continuous-time stochastic movement models to animal tracking data. The methods are based on those introduced in Fleming et al. (2014-2016).

Arguments

Details

Package:
ctmm
Type:
Package
Version:
0.3.2
Date:
2015-05-12
License:
GPL-3

References

C. H. Fleming, J. M. Calabrese, T. Mueller, K.A. Olson, P. Leimgruber, and W. F. Fagan. (2014). From fine-scale foraging to home ranges: A semi-variance approach to identifying movement modes across spatiotemporal scales. The American Naturalist, 183(5), E154-E167.

C. H. Fleming and J. M. Calabrese and T. Mueller and K. A. Olson and P. Leimgruber, and W. F. Fagan (2014). Non-Markovian maximum likelihood estimation of autocorrelated movement processes Methods in Ecology and Evolution, 5(5) 462-472.

C. H. Fleming and Y. Subasi and J. M. Calabrese. (2015). A maximum-entropy description of animal movement. Physical Review E, 91, 032107.

C. H. Fleming and W. F. Fagan and T. Mueller and K. A. Olson and P. Leimgruber, and J. M. Calabrese (2015). Rigorous home-range estimation with movement data: A new autocorrelated kernel-density estimator. Ecology, 96(5), 1182-1188.

C. H. Fleming, W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgruber, and J. M. Calabrese. (2016). Estimating where and how animals travel: An optimal framework for path reconstruction from autocorrelated tracking data. Ecology 10.1890/15-1607.