#generate data for 2 process model, each process measured by noisy indicator,
#stable individual differences in process levels.
generatingModel<-ctModel(Tpoints=8,n.latent=2,n.TDpred=0,n.TIpred=0,n.manifest=2,
MANIFESTVAR=diag(.1,2),
LAMBDA=diag(1,2),
DRIFT=matrix(c(-.2,-.05,-.1,-.1),nrow=2),
TRAITVAR=matrix(c(.5,.2,0,.8),nrow=2),
DIFFUSION=matrix(c(1,.2,0,4),2),
CINT=matrix(c(1,0),nrow=2),
T0MEANS=matrix(0,ncol=1,nrow=2),
T0VAR=diag(1,2))
data<-ctGenerate(generatingModel,n.subjects=150,burnin=500)
## Further examples set to 'dontrun' because they take longer than 5s.
ctIndplot(data,n.manifest=2,Tpoints=4,n.subjects=10)
model<-ctModel(Tpoints=8, TRAITVAR='auto', n.latent=2,
n.manifest=2, LAMBDA=diag(2))
checkf<-ctFit(data,model,stationary=c('T0VAR','T0MEANS'))
summary(checkf,verbose=TRUE)
#### with 2 process from 4 indicators, latent trait, TDpred and TIpred
Tpoints=8
n.latent=2
n.manifest=4
n.TDpred=1
n.TIpred=1
generatingModel<-ctModel(Tpoints=Tpoints,n.latent=n.latent,
n.TDpred=n.TDpred,n.TIpred=n.TIpred,n.manifest=n.manifest,
LAMBDA=matrix(c(1,.4,.8,0,0,0,0,1),nrow=n.manifest,ncol=n.latent),
MANIFESTVAR=diag(c(.2),n.manifest),
MANIFESTTRAITVAR=matrix(c(.3,.1,0,.2, 0,.2,0,.15,
0,0,0,0, 0,0,0,.4) ,n.manifest,n.manifest),
MANIFESTMEANS=matrix(c(0,0,0,0),n.manifest,1),
DRIFT=matrix(c(-.23,.1,.0,-.4),n.latent),
DIFFUSION=matrix(c(8.3,5.1,0,8.4),n.latent,n.latent),
CINT=matrix(c(0,.4),n.latent,1),
TDPREDEFFECT=matrix(c(1.2,-.4),nrow=n.latent,ncol=n.TDpred),
TIPREDEFFECT=matrix(c(.32,-.08),nrow=n.latent,ncol=n.TIpred),
TDPREDMEANS=matrix(c(0,0,1,rep(0, (Tpoints-1-3)*n.TDpred)),nrow=n.TDpred*(Tpoints-1)),
TIPREDMEANS=matrix(0,nrow=n.TIpred),
TDPREDVAR=diag(0.1,n.TDpred*(Tpoints-1)),
TIPREDVAR=diag(.4,n.TIpred),
T0MEANS=matrix(0,ncol=1,nrow=n.latent))
data<-ctGenerate(generatingModel,n.subjects=100,burnin=500)
model<-ctModel(n.latent=n.latent, n.TDpred=n.TDpred, n.TIpred=n.TIpred,
n.manifest=n.manifest,
LAMBDA=matrix(c(1,"l2","l3",0,0,0,0,1),n.manifest,n.latent),
TRAITVAR='auto',Tpoints=Tpoints)
fit<-ctFit(data,model, stationary=c('T0VAR','T0MEANS', 'T0TIPREDEFFECT'))
summary(checkf)
Run the code above in your browser using DataLab